Scaling Model-Based Average-Reward Reinforcement Learning for Product Delivery

نویسندگان

  • Scott Proper
  • Prasad Tadepalli
چکیده

Reinforcement learning in real-world domains suffers from three curses of dimensionality: explosions in state and action spaces, and high stochasticity. We present approaches that mitigate each of these curses. To handle the state-space explosion, we introduce “tabular linear functions” that generalize tile-coding and linear value functions. Action space complexity is reduced by replacing complete joint action space search with a form of hill climbing. To deal with high stochasticity, we introduce a new algorithm called ASH-learning, which is an afterstate version of H-Learning. Our extensions make it practical to apply reinforcement learning to a domain of product delivery an optimization problem that combines inventory control and vehicle routing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling Average-reward Reinforcement Learning for Product Delivery

Reinforcement learning in real-world domains suffers from three curses of dimensionality: explosions in state space and action space, and high stochasticity. We give partial solutions to each of these curses that provide order-of-magnitude speedups in execution time over standard approaches. We demonstrate our methods in the domain of product delivery. We present experimental results on refinem...

متن کامل

A Reinforcement Learning Approach for Product Delivery by Multiple Vehicles

Real-time delivery of products in the context of stochastic demands and multiple vehicles is a difficult problem, as it requires the joint investigation of the problems in inventory control and vehicle routing. We model this problem in the framework of Average-reward Reinforcement Learning (ARL) and present experimental results on a modelbased ARL algorithm called H-Learning with piecewise line...

متن کامل

Reinforcement learning based feedback control of tumor growth by limiting maximum chemo-drug dose using fuzzy logic

In this paper, a model-free reinforcement learning-based controller is designed to extract a treatment protocol because the design of a model-based controller is complex due to the highly nonlinear dynamics of cancer. The Q-learning algorithm is used to develop an optimal controller for cancer chemotherapy drug dosing. In the Q-learning algorithm, each entry of the Q-table is updated using data...

متن کامل

Scaling Up Average Reward Reinforcement Learning by Approximating the Domain Models and the Value Function

Almost all the work in Average-reward Reinforcement Learning (ARL) so far has fo-cused on table-based methods which do not scale to domains with large state spaces. In this paper, we propose two extensions to a model-based ARL method called H-learning to address the scale-up problem. We extend H-learning to learn action models and reward functions in the form of Bayesian networks, and approxima...

متن کامل

Continuous-Time Hierarchical Reinforcement Learning

Hierarchical reinforcement learning (RL) is a general framework which studies how to exploit the structure of actions and tasks to accelerate policy learning in large domains. Prior work in hierarchical RL, such as the MAXQ method, has been limited to the discrete-time discounted reward semiMarkov decision process (SMDP) model. This paper generalizes the MAXQ method to continuous-time discounte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006